Hodson R. Inflammatory bowel disease. Nature. 2016;540(7634): doi:10.1038/540S97a
Cosnes, J.; Cattan, S.; Blain, A.; Beaugerie, L.; Carbonnel, F.; Parc, R.; Gendre, J.P. Long-term evolution of disease behavior of Crohn’s disease. Inflamm. Bowel Dis. 2002, 8, 244–250. [CrossRef]
Latella, G.; Papi, C. Crucial steps in the natural history of inflammatory bowel disease. World J. Gastroenterol. 2012, 18, 3790–3799.
Rieder, F.; Fiocchi, C. Intestinal fibrosis in IBD—A dynamic, multifactorial process. Rev. Gastroenterol. Hepatol. 2009, 6, 228–235. [CrossRef] [PubMed]
Abraham and J. H. Cho, “Inflammatory bowel disease,” The New England Journal of Medicine, vol. 361, no. 21, pp. 2066–2078, 2009.
Monteleone, D. Fina, R. Caruso, and F. Pallone, “New mediators of immunity and inflammation in inflammatory bowel disease,” Current Opinion in Gastroenterology, vol. 22, no. 4, pp. 361–364, 2006.
J. Yarur, A. Jain, D. A. Sussman et al., “The association of tissue anti-TNF drug levels with serological and endoscopic disease activity in inflammatory bowel disease: the ATLAS study,” Gut, vol. 65, no. 2, pp. 249–255, 2016.
Guan, H. A. Burtnick, G. Qing et al., “Employing an IL-23 p19 vaccine to block IL-23 ameliorates chronic murine colitis,” Immunotherapy, vol. 5, no. 12, pp. 1313–1322, 2013.
Guan, Y. Ma, L. Aboud et al., “Targeting IL-23 by employing a p40 peptide-based vaccine ameliorates murine allergic skin and airway inflammation,” Clinical & Experimental Allergy, vol. 42, no. 9, pp. 1397–1405, 2012.
Guan, Y. Ma, C. L. Hillman et al., “Development of recombinant vaccines against IL-12/IL-23 p40 and _in vivo_ evaluation of their effects in the downregulation of intestinal inflammation in murine colitis,” Vaccine, vol. 27, no. 50, pp. 7096–7104, 2009.
Guan, Y. Ma, C. L. Hillman et al., “Targeting IL-12/IL-23 by employing a p40 peptide-based vaccine ameliorates TNBS-induced acute and chronic murine colitis,” Molecular Medicine, vol. 17, no. 7-8, pp. 646–656, 2011
Guan, C. R. Weiss, G. Qing, Y. Ma, and Z. Peng, “An IL-17 peptide-based and virus-like particle vaccine enhances the bioactivity of IL-17 in vitro and in vivo,” Immunotherapy, vol. 4, no. 12, pp. 1799–1807, 2012.
Guan, C. R. Weiss, S. Wang et al., “Reversing ongoing chronic intestinal inflammation and fibrosis by sustained block of IL-12 and IL-23 using a vaccine in mice,” Inflammatory Bowel Disease, vol. 24, no. 9, pp. 1941–1952, 2018.
Guan and J. Zhang, “Recent advances: the imbalance of cytokines in the pathogenesis of inflammatory bowel disease,” Mediators of Inflammation, vol. 2017, Article ID 4810258, 8 pages, 2017.
Ma, Q. Guan, A. Bai et al., “Targeting TGF-beta1 by employing a vaccine ameliorates fibrosis in a mouse model of chronic colitis,” Inflammatory Bowel Disease, vol. 16, no. 6, pp. 1040–1050, 2010.
Zhou, Y. Ma, P. Jia, Q. Guan, J. E. Uzonna, and Z. Peng, “Enhancement of IL-10 bioactivity using an IL-10 peptidebased vaccine exacerbates _Leishmania major_ infection and improves airway inflammation in mice,” Vaccine, vol. 28, no. 7, pp. 1838–1846, 2010.
Guan, R. Warrington, S. Moreno, G. Qing, C. Weiss, and Z. Peng, “Sustained suppression of IL-18 by employing a vaccine ameliorates intestinal inflammation in TNBS-induced murine colitis,” Future Science OA, vol. 5, no. 7, 2019.
Fallingborg, J.; Christensen, L.A.; Jacobsen, B.A.; Rasmussen, S.N. Very low intraluminal colonic pH in patients with active ulcerative colitis. Dig. Dis. Sci. 1993, 38, 1989–1993. [CrossRef]
Press, A.G.; Hauptmann, I.A.; Hauptmann, L.; Fuchs, B.; Fuchs, M.; Ewe, K.; Ramadori, G. Gastrointestinal pH profiles in patients with inflammatory bowel disease. Aliment. Pharmacol. Ther. 1998, 12, 673–678. [CrossRef] [PubMed]
Krawczyk, C.M.; Holowka, T.; Sun, J.; Blagih, J.; Amiel, E.; DeBerardinis, R.J.; Cross, J.R.; Jung, E.; Thompson, C.B.; Jones, R.G.; et al. Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. Blood 2010, 115, 4742–4749. [CrossRef] [PubMed]
Lardner, A. The effects of extracellular pH on immune function. J. Leukoc. Biol. 2001, 69, 522–530. Int. J. Mol. Sci. 2022, 23, 1419
Roiniotis, J.; Dinh, H.; Masendycz, P.; Turner, A.; Elsegood, C.L.; Scholz, G.M.; Hamilton, J.A. Hypoxia prolongs monocyte/macrophage survival and enhanced glycolysis is associated with their maturation under aerobic conditions.J. Immunol. 2009, 182, 7974–7981. [CrossRef]
Tannahill, G.M.; O’Neill, L.A. The emerging role of metabolic regulation in the functioning of Toll-like receptors and the NOD-like receptor Nlrp3. FEBS Lett. 2011, 585, 1568–1572. [CrossRef] [PubMed]
Gunnerson KJ, Saul M, Kellum JA: Lactic versus nonlactic metabolic acidosis: outcomes in critically ill patients [abstract]. Crit Care 2003, Suppl 2:17.
Opie L: Effect of extracellular pH on function and metabolism of isolated perfused rat heart. J Appl Physiol 1965, 209:19751980.
Salzman AL, Wang H, Wollert PS, Vandermeer TJ, Compton CC, Denenberg AG, Fink MP: Endotoxin-induced ileal mucosal hyperpermeability in pigs: role of tissue acidosis. Am J Physiol 1994, 266:G633-G646.
Menconi MJ, Salzman AL, Unno N, Ezzell RM, Casey DM, Brown DA, Tsuji Y, Fink MP: Acidosis induces hyperpermeability in Caco-2BBe cultured intestinal epithelial monolayers. Am J Physiol 1997, 272:G1007-G1021.
Meiron O, Ashkenazi B.: Method for Producing Stabilized Amorphous Calcium Carbonate. US patents 9,550,878 (2017) and 10,125,262 (2018).
Abu Riziq A, Blum YD, Ben Y, Hershkovitz S: Encapsulated Stable Amorphous Calcium Carbonate Compositions. EP patent application 15827875 (2015).
Ben Y, Blum YD: Compositions of Amorphous Calcium Carbonate for Pulmonary or Buccal Administration. US patent 10758565 (2020).
Ben Y, Blum YD: Amorphous Calcium Carbonate Stabilized with Polyphosphates or Bisphosphonates. US Patent Application 2018153930 (2018).
Ben Y, Blum YD, Natan Yehudit: Amorphous Calcium Carbonate for Treatment of Acidosis. WO Patent Application 2021181372